Coexistence in two-type first-passage percolation models

نویسندگان

  • Olivier Garet
  • Régine Marchand
  • OLIVIER GARET
چکیده

We study the problem of coexistence in a two-type competition model governed by first-passage percolation on Z or on the infinite cluster in Bernoulli percolation. Actually, we prove for a large class of ergodic stationary passage times that for distinct points x, y ∈ Z, there is a strictly positive probability that {z ∈ Z; d(y, z) < d(x, z)} and {z ∈ Z; d(y, z) > d(x, z)} are both infinite sets. We also show that there is a strictly positive probability that the graph of time-minimizing path from the origin in first-passage percolation has at least two topological ends. This generalizes results obtained by Häggström and Pemantle for independent exponential times on the square lattice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coexistence in Two-type First-passage Percolation Models by Olivier Garet

We study the problem of coexistence in a two-type competition model governed by first-passage percolation on Zd or on the infinite cluster in Bernoulli percolation. We prove for a large class of ergodic stationary passage times that for distinct points x, y ∈ Zd , there is a strictly positive probability that {z ∈ Zd ;d(y, z) < d(x, z)} and {z ∈ Zd ;d(y, z) > d(x, z)} are both infinite sets. We...

متن کامل

Geodesics in First-Passage Percolation

We consider a wide class of ergodic first passage percolation processes on Z2 and prove that there exist at least four one-sided geodesics a.s. We also show that coexistence is possible with positive probability in a four color Richardson’s growth model. This improves earlier results of Häggström and Pemantle [9], Garet and Marchand [7] and Hoffman [11] who proved that first passage percolation...

متن کامل

Coexistence in three type last passage percolation model

A three types competition model governed by directed last passage percolation on N 2 is considered. We prove that coexistence of the three types, i.e. the sets of vertices of the three types are simultaneously unbounded, occurs with positive probability. Moreover, the asymptotic angles formed by the two competition interfaces with the horizontal axis are determined and their probability of bein...

متن کامل

Coexistence for Richardson type competing spatial growth models

We study a large family of competing spatial growth models. In these the vertices in Z can take on three possible states {0,1,2}. Vertices in states 1 and 2 remain in their states forever, while vertices in state 0 which are adjacent to a vertex in state 1 (or state 2) can switch to state 1 (or state 2). We think of the vertices in states 1 and 2 as infected with one of two infections while the...

متن کامل

A Two - Species Competition Model

We consider a two-type stochastic competition model on the integer lattice Z. The model describes the space evolution of two “species” competing for territory along their boundaries. Each site of the space may contain only one representative (also referred to as a particle) of either type. The spread mechanism for both species is the same: each particle produces offspring independently of other...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003